MTH 530, Abstract Algebra I (graduate) Fall 2012 ,HW number SEVEN (Due: Sunday December 23)

Ayman Badawi

QUESTION 1. (i) Let p be a prime number >3. We know that Z_{p}^{*} under multiplication modulo p is a cyclic group of order p-1. Let $H=\left\{a^{2} \mid a \in Z_{p}^{*}\right\}$. Prove that H is a subgroup of order $(p-1) / 2$. [Hint: you may want to use the concept of group homomorphism].
(ii) Let p and H as above (part (i)). Suppose that $p-1 \notin H$. Prove that for each $a \in Z_{P}^{*}$, we have either $a \in H$ or $p-a \in H$.
(iii) Let D be a group of order $n \geq 2$. Prove that D is a group-isomorphic to a subgroup of S_{n}.
(iv) Let $n \geq 2$ be a positive integer and F be the set of all non-isomorphic groups of order n. Prove that F is a finite set.
(v) Let F be a group of order p^{n} for some prime number p and positive integer $n \geq 1$. Prove that F has a subgroup of order p^{i} for each i where $1 \leq i \leq(n-1)$
(vi) Let F be a finite group. Suppose that $p^{n}| | F \mid$ for some prime number p and positive integer n. Prove that F has a subgroup of order p^{n}.
(vii) Let G be a group and H be a cyclic group and F is a group homomorphism from G onto H (i.e., Range $(\mathrm{F})=\mathrm{H})$. Is $F^{-1}(H)$ an Abelian group? Prove or Disprove.
(viii) Let D, K be finite groups such that $K<D$. Assume that K is a sylow p-subgroup of D. Let F be a p-subgroup of D such that $F \subseteq N_{D}(K)$. Prove that $F \subseteq K$.
(ix) Let F be a group such that $|F|=p q$ for some distinct prime numbers p, q where $p<q$ and p does not divide q-1. Prove that F is cyclic (i.e., D is a group-isomorphic to $Z_{p q}$).
(x) Let G be a group of order 105 such that $7||Z(G)|$. Prove that G is an abelian group.
(xi) Let G be a group of order 56 . Prove that H is not a simple group
(xii) Let G be a group of order 345. Prove that G is an abelian group. Can we say more about G ?
(xiii) Let D be a finite simple group and suppose that D has two subgroups, say K and H , such that $[D: K]=p$ and $[D: H]=q$ for some prime numbers p, q. Prove that $|H|=|K|$ (and hence $p=q$). [hint: indeed interesting!!!!]
(xiv) Let F be a simple group of order 60. Prove that F has two subgroups say H, K such that $|H|=10$ and $|K|=6$. [so we can conclude that A_{5} has two subgroups : one of order 10 and the other of order 6 , since we know that A_{5} is simple].

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

